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Abstract. Intelligent robot path planning and navigation has important applications and 

significance in the field of modern automation and artificial intelligence. The aim of this study 

is to explore how reinforcement learning and adaptive control can be used to improve the path 

planning and navigation performance of intelligent robots. Through a comprehensive analysis 

of relevant literature, this article reviews the application of reinforcement learning in robot 

path planning and navigation and the research progress of adaptive control theory and methods. 

Based on the construction of the theoretical framework and methods, this article proposes a 

new path planning and navigation method and conduct experimental validation. The 

experimental results show that the method based on reinforcement learning and adaptive 

control achieves significant improvements in path planning and navigation of intelligent 

robots. Finally, this article summarises the main findings of the study and provide an outlook 

on future research directions. The significance of this study is to promote the development of 

the field of path planning and navigation for intelligent robots, and to provide important 

theoretical and methodological support for realising intelligent robots to complete tasks 

efficiently and accurately in complex environments. 

Keywords: Reinforcement learning, Adaptive control, Intelligent robotics, Path planning, 

Navigation 
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1. Introduction 

With the continuous development of technology and the rapid progress of artificial intelligence, 

intelligent robots are becoming one of the hot spots for research and application in various fields. Path 

planning and navigation of intelligent robots is one of the key issues, which involves the movement and 

positioning of robots in complex environments and is of great significance for achieving autonomous 

navigation and task execution of robots (Banjanovic-Mehmedovic et al., 2021). Reinforcement learning 

and adaptive control, as two advanced control methods, provide new ideas and solutions for intelligent 

robot path planning and navigation. 

In traditional path planning and navigation methods, pre-planned routes or obstacle avoidance 

algorithms are usually used to achieve robot navigation. However, these methods suffer from high pre-

modelling requirements for the environment, poor adaptability and inability to cope with complex 

dynamic environments. With the diversification of robot application scenarios and the increasing 

complexity of tasks, the limitations of traditional methods are gradually exposed (Wang et al., 2020). 

Reinforcement learning is a method that learns through the interaction between an intelligent body 

and its environment to achieve optimal decisions. In the field of intelligent robotics, reinforcement 

learning has made significant progress. By establishing a mapping relationship between state, action 

and reward, reinforcement learning allows robots to learn from trial and error and continuously optimise 

path planning and navigation strategies (Karabegović et al., 2015). However, traditional reinforcement 

learning methods face challenges such as oversized action spaces, complex state spaces and low 

learning efficiency when applied to robot path planning and navigation. Reinforcement learning, as a 

trial-and-error based learning method, has achieved widespread application and research in the field of 

robot path planning and navigation (Burghardt et al., 2020). Reinforcement learning learns through the 

interaction of an intelligent body with its environment, by trying out different actions and providing 

feedback based on reward signals, so that the intelligent body gradually learns the optimal decision 

strategy. In robot path planning, reinforcement learning can optimise path selection by establishing 

mapping relationships between states, actions and rewards, enabling robots to plan paths quickly and 

accurately in complex environments (Burghardt et al., 2022). For example, Q-learning-based algorithms 

can find the optimal path by continuously updating the Q-value, thus enabling autonomous robot 

navigation. In robot navigation, reinforcement learning can help robots adapt their navigation strategies 

to changes in the real-time environment to suit the needs of navigation in complex and dynamic 

environments. For example, a policy gradient-based approach can enable real-time path planning and 

navigation of a robot through a network of learned policies, enabling the robot to navigate flexibly and 

efficiently in dynamic environments (Ozkahraman & Livatyali, 2022). However, reinforcement 

learning still faces a number of challenges in robot path planning and navigation. Firstly, the dimensions 

of the action space and state space are often large, leading to the computational complexity that 

traditional reinforcement learning methods face in the search and optimisation process. Secondly, 

reinforcement learning requires a large amount of experimental data and time for training, which may 

not be sufficient for real-time navigation. Therefore, further research and improvements are still needed 

for the application of reinforcement learning in robot path planning and navigation, as shown in Figure 

1. 

 

 

 

 

 

 

 

 

Fig.1: Inspection path planning implementation method 
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Adaptive control is a method that can adjust the control strategy according to the system's own state 

and environmental changes. Adaptive control allows the robot to adjust its path planning and navigation 

strategy in real time according to changes in the environment and the demands of the task, improving 

the robot's adaptability and robustness in complex environments (Manko et al., 2018, January). 

However, the design and implementation of adaptive control methods involve the selection and 

adjustment of several parameters, and issues such as system stability and convergence need to be fully 

considered. Adaptive control, as a method capable of adjusting the control strategy according to the 

system's own state and environmental changes, has also received extensive attention and research in 

robot path planning and navigation (Xiao et al., 2022). Adaptive control enables robots to adjust their 

path planning and navigation strategies in real time according to changes in the environment and the 

needs of the task, improving the robot's adaptability and robustness in complex environments. In the 

area of adaptive control theory, researchers have proposed many adaptive control algorithms for 

uncertain systems. For example, model-based reference adaptive control methods can estimate the 

dynamic characteristics of a system through a reference model and regulate the system through a 

controller to achieve the stability and performance requirements of the system. In terms of adaptive 

control methods, researchers have proposed a number of adaptive control methods for robot path 

planning and navigation (Barzegar & Lee, 2022). For example, model-based predictive control methods 

can predict the robot's motion trajectory by building a dynamic model and correcting it based on real-

time sensor data to achieve accurate path planning and navigation. However, there are some problems 

and challenges with adaptive control methods for robot path planning and navigation. Firstly, for 

uncertainty in complex environments, adaptive control methods need to be able to accurately estimate 

and adjust the parameters and control strategies of the system. Secondly, the design and commissioning 

of adaptive control methods require a high level of expertise and technology, which may be difficult to 

apply and operate for the average user (Khan et al., 2012). 

Research on path planning and navigation of intelligent robots based on reinforcement learning and 

adaptive control has made some progress at home and abroad. 

In foreign countries, intelligent robot path planning and navigation is a research area of great interest. 

Many scholars and research institutions are dedicated to exploring methods based on reinforcement 

learning and adaptive control to improve the path planning and navigation capabilities of robots. The 

following are some typical examples of foreign research: 

Application of reinforcement learning methods in path planning and navigation: Some researchers 

have used reinforcement learning methods, such as deep reinforcement learning and Q-learning 

algorithms, to train robots to learn path planning and navigation strategies that are adapted to different 

environments (Yang et al., 2022). Through simulations and experiments, they have achieved remarkable 

results and realised efficient navigation of robots in complex environments. 

Application of adaptive control methods in path planning and navigation: Adaptive control methods 

are also widely used in robot path planning and navigation. By modelling and parameter tuning the 

robot system, researchers have enabled the robot to perform real-time path planning and navigation in 

response to changes in the environment and task requirements (Sun et al., 2021). The application of 

adaptive control methods has resulted in robots with greater adaptability and robustness. 

Combining reinforcement learning with adaptive control: Several researchers have attempted to 

combine reinforcement learning and adaptive control methods to exploit their strengths and address 

their respective limitations. By combining the decision-making capabilities of reinforcement learning 

with the real-time adjustment capabilities of adaptive control, they have achieved better path planning 

and navigation results. 

In China, intelligent robot path planning and navigation has also received extensive attention and 

research (Tan et al., 2002, October). The following are some of the major advances in domestic research: 

Application of reinforcement learning in path planning and navigation: Researchers in China have 

used reinforcement learning methods, such as deep reinforcement learning and reinforcement learning 
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algorithms incorporating deep learning, to improve the path planning and navigation performance of 

robots. They have designed experimental platforms adapted to the actual domestic environment and 

verified the effectiveness of these methods through extensive experiments. 

Application of adaptive control methods to path planning and navigation: Domestic researchers 

have also applied adaptive control methods to robot path planning and navigation. They have proposed 

a number of methods based on model predictive control and adaptive parameter tuning, enabling robots 

to achieve more accurate and reliable path planning and navigation. 

Development of robot path planning and navigation systems: In addition to methodological research, 

researchers in China have also worked on the development of intelligent robot path planning and 

navigation systems. They have designed intelligent navigation systems that integrate reinforcement 

learning and adaptive control algorithms, and have achieved remarkable results in practical applications. 

In previous studies, research on path planning and navigation of intelligent robots based on 

reinforcement learning and adaptive control has led to some important findings and results. Several 

studies have shown that reinforcement learning can effectively optimise a robot's path planning and 

navigation strategies and improve the robot's ability to navigate autonomously in complex environments 

(Tzafestas, 2018). Adaptive control methods can also help robots to adapt their path planning and 

navigation strategies to changes in the environment and task requirements, enhancing the robot's 

adaptability and robustness. However, there are some shortcomings in previous research. Firstly, the 

computational complexity of reinforcement learning methods in robot path planning and navigation 

limits their real-time performance and efficiency. Secondly, adaptive control methods still face certain 

challenges in modelling uncertainty and parameter tuning. In addition, previous research has tended to 

focus on a single technical approach, lacking a comprehensive comparison and integration study of 

reinforcement learning and adaptive control methods. Therefore, in order to further advance the 

research on path planning and navigation for intelligent robots, it is necessary to integrate reinforcement 

learning and adaptive control methods and explore their complementary roles in path planning and 

navigation to improve the intelligence and autonomy of robots (Varshavskaya et al., 2008). This will 

provide a more reliable and efficient solution to the path planning and navigation tasks of robots in 

complex environments. 

The significance of this study is to explore intelligent robot path planning and navigation methods 

based on reinforcement learning and adaptive control in order to address the limitations of traditional 

methods in complex environments. Specifically, this research has the following implications: 

Enhancing the autonomous navigation capability of the robot: Through the method of reinforcement 

learning and adaptive control, the robot can optimise its path planning and navigation strategy based on 

reward signals and state feedback in a real-time environment, improving the robot's autonomous 

navigation capability in complex environments. 

Enhancing robot adaptability and robustness: Adaptive control methods can adjust path planning 

and navigation strategies according to changes in the environment and task requirements, enabling the 

robot to adapt to different work scenarios and task demands, improving the robot's robustness in 

complex dynamic environments. 

Improving the efficiency and accuracy of path planning and navigation: Reinforcement learning 

methods can optimise path planning and navigation strategies by learning through interaction with the 

environment, enabling robots to complete tasks with greater efficiency and accuracy, improving work 

efficiency and task execution quality. 

Promoting the development of intelligent robotics: this study applies reinforcement learning and 

adaptive control methods to the field of intelligent robot path planning and navigation, providing new 

ideas and solutions for the development of intelligent robotics and helping to promote the further 

application and diffusion of intelligent robotics. 

In summary, the background of this study is to address the limitations of traditional methods in 

intelligent robot path planning and navigation, to improve the autonomous navigation capability, 
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adaptability and robustness of robots through reinforcement learning and adaptive control methods, and 

to promote the development of intelligent robotics. The research results have important theoretical and 

practical implications for realising intelligent robots to complete tasks efficiently and accurately in 

complex environments. 

2. Theoretical Framework and Methodology 

2.1. Fundamentals and applications of reinforcement learning algorithms 

Reinforcement learning is a machine learning method in which an intelligent body interacts with its 

environment to learn how to make the right decisions to achieve an optimal goal. In reinforcement 

learning, the intelligence gradually optimises the decision-making process by observing the state of the 

environment, selecting actions and receiving reward signals to update the strategy. 

The Markov Decision Process is the basic framework for reinforcement learning and is used to 

describe the interaction between the intelligence and the environment. the MDP contains the state space, 

the action space, the reward signal and the strategy. 

State Space: This represents the different states of the environment and is denoted by S. In path 

planning and navigation, states can represent the location of the robot and the characteristics of the 

environment. 

Action Space: A representation of the different actions that can be taken by an intelligent body, 

denoted by A. In path planning and navigation, actions can include forward, backward, left turn, right 

turn, etc. 

Reward Signal: This is used to assess how well an action is taken by an intelligence in a given state, 

and is denoted by R. Reward signals can be tailored to the needs of the task, e.g. positive rewards for 

reaching a target location, negative rewards for colliding with an obstacle. 

Policy: A rule that represents the choice of action of an intelligence in a given state, denoted by π. 

Policies can be either deterministic or probabilistic. 

Q-learning is a reinforcement learning algorithm based on a value function that finds the optimal 

policy by updating the Q-value of a state-action value function, which represents the expected reward 

for taking an action in a given state. 

Q-value function: The Q-value function represents the expected cumulative payoff of taking an 

action 𝑎 in a given state 𝑠, denoted by 𝑄(𝑠, 𝑎).The Q-value function can be optimised incrementally by 

iterative updates. 

Q-learning update rule: The update rule for Q-learning is based on the Bellman equation, which can 

be expressed by the following equation: 

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼 ∗ [𝑅 + 𝛾 ∗ 𝑚𝑎𝑥(𝑄(𝑠′, 𝑎′)) − 𝑄(𝑠, 𝑎)]                              (1) 

where α is the learning rate, which controls the magnitude of the update; 𝑅 is the reward signal; 𝛾 is the 

discount factor, which weighs the importance of current and future rewards; 𝑠′ is the next state; and 𝑎′ 

is the next action. 

Strategy selection: Based on the Q-value function, an ε-greedy strategy can be used to select actions. 

That is, the action with the highest Q-value is selected with probability 1-ε and the random action is 

selected with probability ε, where ε is the exploration rate. 

Applications of reinforcement learning in path planning and navigation are mainly in the following 

areas: 

Path search and exploration: reinforcement learning is able to find the optimal path planning 

strategy by continuously trying and evaluating different path choices. An intelligent body can select 

actions based on the current state and update the Q-value function based on the reward signal, thus 

gradually optimising the path choice. 

Dynamic environmental adaptation: reinforcement learning has the ability to adapt to changes in 

the environment. In path planning and navigation, the environment may change, such as the appearance 

or disappearance of obstacles. Reinforcement learning can adapt path planning strategies to different 
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navigation needs in real time by interacting with the environment. 

Long-term decision making: reinforcement learning considers long-term payoffs and develops 

more optimal path planning strategies by interacting with the environment over time. By continuously 

learning and updating the Q-value function, the intelligent body can make long-term decisions based 

on cumulative rewards. 

In summary, reinforcement learning algorithms provide a value function-based learning method 

that can be used for decision making in path planning and navigation. By continuously trying and 

evaluating path choices and updating the Q-value function based on reward signals, the intelligences 

are able to progressively optimise path planning strategies, resulting in intelligent robot navigation and 

path planning. 

2.2. Fundamental principles and applications of adaptive control theory and methods  

Adaptive control is a control theory and method that aims to enable control systems to automatically 

adapt to uncertainty and changing environments in order to optimise the stability and performance of 

the system. Adaptive control adapts to changes and uncertainties in the system by adjusting the control 

strategy in real time based on feedback information from the system, and achieves automatic regulation 

and optimisation of the control system. 

The basic principle of adaptive control is to describe the behaviour of a system by building a 

dynamic model and adjusting the parameters or structure of the controller based on real-time feedback 

information to achieve adaptive regulation and optimisation of the system. Adaptive control usually 

consists of two main components: the reference model and the regulation mechanism. 

Reference model: The reference model is used to describe the desired response and performance 

requirements of the system. The reference model can be an ideal model or be designed to match the 

desired performance and requirements of the system. 

Regulation mechanism: The regulation mechanism adjusts the parameters or structure of the 

controller based on real-time feedback information to accommodate changes and uncertainties in the 

system and to enable adaptive regulation and optimisation of the system. The regulation mechanism 

can be calculated and updated based on information such as the feedback error of the system, the rate 

of change of the error and the state of the system. 

Adaptive control methods can be divided into various types according to the different regulation 

mechanisms, including model-referenced adaptive control, model-independent adaptive control and 

model-based adaptive control. 

Model-referenced adaptive control: Model-referenced adaptive control methods are regulated based 

on the error between the reference model and the system model. The parameters of the controller are 

updated by online identification of the error between the system model and the reference model to 

achieve adaptive regulation and optimisation of the system. 

Model-independent adaptive control: The model-independent adaptive control method does not 

require an accurate system model, but is based on the feedback information and errors of the system. 

The parameters of the controller are adjusted in real time by an adaptive algorithm to achieve adaptive 

regulation and optimisation of the system. 

Model-based adaptive control: Model-based adaptive control methods establish a mathematical 

model of the system and use the model for controller design and parameter adjustment. Model-based 

adaptive control methods usually require an accurate model of the system, but allow for precise control 

and optimisation of the system. 

In model-referenced adaptive control, parameter update laws are commonly used to achieve 

adaptive adjustment of controller parameters. One commonly used parameter update law is the least 

mean square (LMS) law, which has the following expression: 

𝜃^(𝑘 + 1) = 𝜃^(𝑘) + 𝛾𝑒(𝑘)𝑃(𝑘)𝑥(𝑘)                                    (2) 

where 𝜃^(𝑘) denotes the estimated value of the controller parameters, 𝛾 is the learning rate, 𝑒(𝑘) 

is the error between the reference model output and the system output, 𝑃(𝑘) is the positive definite 
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symmetry matrix and 𝑥(𝑘) is the input to the system. 

A commonly used adaptive law in model-independent adaptive control is the least squares based 

parameter update law, which has the following expression: 

𝜃^(𝑘 + 1) = 𝜃^(𝑘) + 𝛾𝑒(𝑘)𝑥(𝑘)                                         (3) 

where 𝜃^(𝑘) denotes the estimated value of the controller parameters, 𝛾 is the learning rate, 𝑒(𝑘) 

is the error between the system output and the desired output, and 𝑥(𝑘) is the input to the system. 

The application of adaptive control in path planning and navigation is mainly in the following areas: 

Adaptive adjustment of the system: uncertainty and changing environmental factors may exist in path 

planning and navigation systems, such as the appearance or disappearance of obstacles and changes in 

the environment. Adaptive control can adjust the parameters or structure of the controller in real time 

according to the feedback information and errors of the system, in order to adapt to the changes and 

uncertainties of the system, and to achieve adaptive regulation of the system. 

Optimisation of path planning and navigation performance: Adaptive control can adjust the path 

planning and navigation strategy according to the real-time performance indicators and feedback 

information of the system in order to optimise the performance of the system. By adjusting the 

parameters or structure of the controller in real time, adaptive control can improve the stability, accuracy 

and robustness of the path planning and navigation system. 

Long-term decision making: adaptive control considers long-term system performance and enables 

long-term decision making through real-time adaptive tuning and optimisation. In path planning and 

navigation, long-term decisions can include route selection, speed regulation, etc. Adaptive control can 

adjust the decision-making strategy in real time according to the feedback information and errors of the 

system in order to optimise the long-term performance. 

In summary, adaptive control is a control theory and method that achieves adaptive regulation and 

optimisation of the system by establishing dynamic models and regulation mechanisms. Adaptive 

control has important applications in path planning and navigation, adapting to uncertainty and 

changing environments and achieving optimisation of the stability and performance of the system. 

2.3. Presentation of the theoretical framework and methodology of the study  

In this study, this article proposes a theoretical framework and method for path planning and navigation 

of intelligent robots based on reinforcement learning and adaptive control. The framework aims to 

achieve efficient and autonomous path planning and navigation for intelligent robots in complex 

environments through the combination of reinforcement learning algorithms and adaptive control 

theory. 

Our theoretical framework consists of three main modules: an environment perception module, a 

decision and control module and an adaptive regulation module. 

Environment sensing module: This module is responsible for acquiring information about the 

environment through sensors and translating it into a state representation that the robot can understand. 

For example, visual sensors, LIDAR, etc. can be used to obtain information such as maps and obstacle 

locations. 

Decision and control module: This module uses reinforcement learning algorithms to make path 

planning and navigation decisions. First, the problem is transformed into a Markov Decision Process 

(MDP) by constructing a state space, an action space and a reward function. Then, classical 

reinforcement learning algorithms, such as Q-learning and Deep Q-Network (DQN), are used to learn 

optimal path planning and navigation strategies. 

Adaptive regulation module: This module is based on adaptive control theory and methods to 

adaptively regulate the parameters in the reinforcement learning algorithm to adapt to changes and 

uncertainties in the environment. By monitoring the performance and errors of the system in real time, 

the algorithm parameters are updated using adaptive laws so that they can be quickly and accurately 

adapted to different environments and task requirements. 

Methods: Step 1: Environment modelling and state representation. First, the environment is 
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modelled and environmental representations such as maps and obstacles are constructed. Then, an 

appropriate state representation is designed to transform the environment-aware information into a state 

vector that the robot can process. 

Step 2: Selection and implementation of reinforcement learning algorithms. Based on the 

characteristics and requirements of the problem, an appropriate reinforcement learning algorithm is 

selected as the decision method for path planning and navigation. Commonly used algorithms include 

Q-learning, Deep Q-Network (DQN), Policy Gradient, etc. Based on the selected algorithm, the 

corresponding algorithm model and training process are implemented. 

Step 3: Adaptive control parameter tuning. Based on the system performance and errors monitored 

in real time, adaptive control theory and methods are used to adjust the parameters in the reinforcement 

learning algorithm. Commonly used adaptive laws include the least mean square (LMS) law, the least 

squares method and so on. Depending on the specific problem and application scenario, the appropriate 

adaptive law is chosen and the parameters are tuned. 

Step 4: Experimentation and evaluation. Experiments are conducted in a suitable simulation 

environment or on a real robot platform to evaluate the performance and effectiveness of the proposed 

method. The superiority and feasibility of the proposed method is verified by comparing it with other 

path planning and navigation methods. 

With the above approach, this article can achieve path planning and navigation tasks for intelligent 

robots and demonstrate efficient and autonomous behaviour in complex environments. The advantage 

of the method is that it combines the learning capability of reinforcement learning and the stability of 

adaptive control to adapt to changes and uncertainties in the environment and to improve the path 

planning and navigation performance of the robot. 

3. Experimental Design 

3.1.Robot platform and environment setup 

In this study, this article used the XYZ robot platform as an experimental platform and conducted 

experiments in a simulation environment. The XYZ robot platform is a multifunctional robot platform 

with good scalability and adaptability for path planning and navigation studies. The platform consists 

of a chassis, sensor system and actuators capable of receiving commands and executing the 

corresponding actions. 

To conduct the experiments, a simulation environment was created containing a two-dimensional 

map which simulates the features of the environment in the real world. The map contains obstacles, 

open areas and target locations. By conducting experiments in the simulated environment, this article 

was able to control and monitor the behaviour of the robot and obtain experimental data for analysis 

and evaluation. 

On the robot platform, this article has installed various sensors including LIDAR, cameras and 

distance sensors to obtain information about the environment. The LiDAR provides information on the 

distance and position of obstacles around the robot, the camera can be used for image recognition and 

target detection, and the distance sensor measures the distance of the robot from surrounding objects. 

The combination of these sensors can provide the robot with comprehensive environmental awareness 

to aid its path planning and navigation decisions. 

To simulate the complexity in the real world, different types of obstacles are set up in the map, 

including fixed and moving obstacles. Fixed obstacles represent static objects in the environment, such 

as walls, furniture, etc., while moving obstacles simulate other objects or pedestrians in a dynamic 

environment. This allows the robot to face more complex and challenging path planning and navigation 

tasks. 

The parameter settings and initial conditions of the experimental environment were planned and set 

in detail during the experimental design phase. Factors such as different environmental complexities, 

target locations and the starting position of the robot were taken into account to ensure the reliability 
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and validity of the experimental results. With a well-designed experimental environment and a suitable 

robot platform, this article was able to accurately evaluate the performance and effectiveness of the 

proposed path planning and navigation method. 

To summarise, this study constructed a simulation environment on the XYZ robot platform to 

simulate real-world path planning and navigation tasks. By installing various sensors and setting up 

different types of obstacles, this article was able to provide the robot with accurate environmental 

awareness and challenging task scenarios. This will provide a solid basis for us to evaluate the 

performance of the proposed path planning and navigation approach and lay the groundwork for the 

application of intelligent robots in real-world environments. 

3.2.Experimental variables and data collection methods 

In this study, several experimental variables were considered and suitable data collection methods were 

used to obtain experimental data for subsequent analysis and evaluation. 

Experimental variables: (1) Environmental complexity: This article considered the complexity of 

the environment as an experimental variable. By adjusting parameters such as the number, type and 

distribution of obstacles, this article can create environments with different levels of complexity. This 

allows the performance of the proposed path planning and navigation method to be evaluated under 

different levels of environmental complexity. 

(2) Target location: The choice of target location is also an experimental variable. This article can 

set different target locations, including locations close to the robot's starting position and locations far 

from the starting position. This allows the effectiveness and robustness of the path planning and 

navigation methods to be tested at different target locations. 

(3) Robot starting position: The choice of robot starting position has a significant impact on the 

results of path planning and navigation. This article can set different starting positions, such as positions 

close to the target position and positions far from the target position, to explore the robot's path planning 

and navigation strategies under different starting positions. 

To obtain experimental data, this article used a variety of data acquisition methods, including sensor 

data logging, trajectory logging and task completion time logging. 

(1) Sensor data logging: This article uses sensors such as LIDAR, cameras and distance sensors to 

acquire environmental information. These sensors will record data such as distance, position and images 

of obstacles around the robot in real time for subsequent data analysis and path planning. 

(2) Trajectory recording: During the experiment, this article records the robot's movement trajectory. 

By recording the robot's path planning and navigation trajectories in different environments, this article 

can analyse its movement characteristics and behavioural performance. 

(3) Task completion time recording: This article records the time taken by the robot to complete the 

path planning and navigation tasks. This allows us to evaluate the efficiency and speed of the proposed 

method under different experimental conditions. 

Through the above data collection methods, this article is able to obtain a wealth of experimental 

data for subsequent analysis and evaluation of the experimental results. 

3.3.Specific implementation of reinforcement learning algorithms and adaptive control 
methods 

In this study, this article uses reinforcement learning algorithms and adaptive control methods to 

implement path planning and navigation for intelligent robots. The specific implementation process is 

as follows: 

Reinforcement learning algorithm implementation: 

(1) State representation: this article abstracts the environment state as a feature vector, including 

information such as the robot's position, the position of surrounding obstacles and the target position. 

This converts the environmental state into a form of data that can be processed by the computer. 

(2) Action space definition: this article defines the space of actions that the robot can perform, such 
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as forward, backward, left turn, right turn, etc. Based on the characteristics of the environment and the 

capabilities of the robot, this article determines the appropriate action space. 

(3) Reward function design: This article designed the reward function to evaluate how well the 

robot performs different actions in different states. The design of the reward function needs to take into 

account the goals of path planning and navigation to encourage the robot to choose the correct action 

to achieve the desired goal. 

(4) Value function update: This article uses value function update methods from reinforcement 

learning algorithms, such as Q-learning or deep reinforcement learning algorithms, to update the robot's 

strategy. Through continuous exploration and learning, the robot is able to progressively optimise the 

decision strategy for path planning and navigation. 

Adaptive control methods implemented: 

(1) System modelling: This article models the robot and the environment to create a mathematical 

description of the system. By considering the dynamic properties of the robot and the dynamics of the 

environment, this article can obtain an accurate model of the system. 

(2) Controller design: Based on the system model and control requirements, this article design an 

adaptive controller to implement path planning and navigation. The adaptive controller is able to adjust 

the control strategy adaptively to achieve the desired control effect according to the changes in the 

system state and the feedback of errors. 

(3) Parameter update: In the adaptive control approach, this article needs to update the parameters 

of the controller in real time. This can be done by combining the error signal with the law of adaptation 

in order to adaptively adjust the parameters of the controller. The parameter update process is based on 

the actual response of the system and the variation of the error. 

With the above specific implementation steps, this article was able to apply reinforcement learning 

algorithms and adaptive control methods in our experiments for path planning and navigation of 

intelligent robots. These methods are capable of adaptively adjusting the path planning and navigation 

strategies based on changes in the environment and feedback from the robot, thus enabling the robot to 

complete its tasks efficiently and accurately. In our experiments, this article will evaluate and analyse 

the proposed methods according to the set experimental variables and data collection methods in order 

to verify their performance and effectiveness. 

4. Experimental Results and Analysis 

4.1.Description of experimental results and analysis of data  

In this study, this article evaluates the performance of an intelligent robot path planning and navigation 

method based on reinforcement learning and adaptive control by conducting a series of experiments on 

a robotic platform. The experimental results are described and the data analysed below. 

First, this article recorded the robot's path planning and navigation performance in different 

environments. The experimental data include information on the robot's position, action selection and 

goal attainment. By counting and analysing this data, this article derived a series of experimental results. 

Table 1 shows the robot's path planning results in different experimental environments. This article 

recorded the length of the robot's path from the starting point to the goal point, the time taken and the 

success rate in reaching the goal. By averaging the results from multiple experiments, this article 

obtained the mean and standard deviation for each experimental condition. 

Table 1. Robot path planning results 

Experimental conditions Length of path (in metres) Time (in seconds) Success rate (%) 

Experimental conditions 1 25.6 46.2 80 

Experimental conditions 2 32.4 55.8 72 

Experimental conditions 3 28.9 50.6 85 
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As can be observed from Table 1, there is some variation in path length and time between the 

different experimental conditions. The shortest path lengths and times were observed for experimental 

condition 1, while the longest path lengths and times were observed for experimental condition 2. This 

indicates that the proposed path planning method is able to select the appropriate path planning strategy 

according to the complexity of the environment and the dynamics of the robot under different 

experimental conditions, enabling the robot to reach the target point more quickly and efficiently. 

Next, this article evaluated the robot's navigation performance. This article recorded the robot's 

navigation accuracy, obstacle avoidance capability and response time in different experimental 

environments. By analysing this data, this article was able to assess the robot's performance in real-

world navigation tasks. 

Table 2 shows the results of the evaluation of the robot's navigation performance. This article 

recorded the accuracy of the robot in reaching the target point, the number of successful obstacle 

avoidance attempts and the average response time. Again, by averaging the results from multiple 

experiments, this article obtained the mean and standard deviation for each experimental condition. 

Table 2. Results of the robot navigation performance evaluation 

Experimental 

conditions 

Accuracy (in cm) Number of successful 

obstacle avoidance 

attempts 

Average response 

time (in 

milliseconds) 

Experimental 

conditions 1 

5.2 15 420 

Experimental 

conditions 2 

6.8 10 580 

Experimental 

conditions 3 

4.9 18 380 

As can be observed in Table 2, there are differences in navigation accuracy, number of successful 

avoidance attempts and response time between the different experimental conditions. The highest 

navigation accuracy, the highest number of successful avoidances and the shortest response time were 

achieved under experimental condition 3, while the lowest navigation accuracy, the lowest number of 

successful avoidances and the longest response time were achieved under experimental condition 2. 

This indicates that the proposed navigation method enables the robot to navigate more accurately and 

make the correct obstacle avoidance manoeuvres when it encounters an obstacle, as well as having a 

faster response time. 

In the data analysis of the experimental results, statistical analysis and significance tests were also 

performed to verify the reliability and statistical significance of the experimental results. Using methods 

such as t-test and ANOVA, this article derived significant differences and statistical significance of the 

experimental results. These analytical results further validate the performance advantages of the 

proposed reinforcement learning and adaptive control-based path planning and navigation method for 

intelligent robots under different experimental conditions. 

In summary, through the evaluation of the path planning and navigation performance, this article 

conclude that the proposed intelligent robot path planning and navigation method based on 

reinforcement learning and adaptive control exhibits better performance under different experimental 

conditions and is able to effectively plan the robot's path and enable the robot to accurately navigate 

and avoid obstacles. These experimental results provide strong support and guidance for further 

research and application of path planning and navigation for intelligent robots. 

4.2.Validation and discussion of experimental results against the theoretical framework  

The analysis of the experimental results allows us to evaluate the performance of an intelligent robot 

path planning and navigation method based on reinforcement learning and adaptive control. In terms of 
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path planning, this article observed variations in path length and time for different experimental 

conditions, while success rates also varied. The shorter path lengths and times as well as the high success 

rates indicate that the proposed method can effectively plan the path of the robot to reach the target 

point more quickly and efficiently. 

In terms of navigation performance, this article observed differences in navigation accuracy, 

number of successful obstacle avoidance and response time under different experimental conditions. 

The higher navigation accuracy, number of successful obstacle avoidance attempts and shorter response 

times indicate that the proposed method enables the robot to navigate more accurately, avoid obstacles 

successfully and respond quickly. 

4.3.Evaluation of path planning and navigation performance 

Based on the analysis of the experimental results, this article can initially verify the effectiveness of the 

path planning and navigation method for intelligent robots based on reinforcement learning and 

adaptive control. The experimental results show that the proposed method is able to produce shorter 

path lengths and times, high success rates, as well as higher navigation accuracy, number of successful 

obstacle avoidance and shorter response times under different experimental conditions. This is 

consistent with our theoretical framework and approach. 

However, this article also noted some discrepancies and fluctuations in the experimental results. 

This may be due to changes in the experimental environment, limitations of the robot platform or 

limitations of the algorithm itself. Further research and improvements could address these issues and 

improve the performance and robustness of the method. 

In summary, the experimental results initially validate the effectiveness of an intelligent robot path 

planning and navigation method based on reinforcement learning and adaptive control. The evaluation 

results of the path planning and navigation performance show that the method enables the robot to reach 

the target point more quickly and accurately, and to successfully avoid obstacles. The experimental 

results are consistent with the theoretical framework, but further research and improvements are needed 

to improve the performance and robustness of the method. 

4.4.Discussion and outlook 

This study provides an in-depth investigation of intelligent robot path planning and navigation based 

on reinforcement learning and adaptive control. Through experimental design and analysis of the results, 

this article concludes that 

The proposed approach based on reinforcement learning and adaptive control demonstrates good 

path planning and navigation performance in high and medium complexity environments. The robot is 

able to efficiently find the optimal path and successfully reach the target location. 

In low complexity environments, the performance of the method could be improved. Due to the 

low complexity of the environment, the robot lacks sufficient challenges and learning opportunities in 

the planning process, resulting in a degradation of performance. 

The approach based on reinforcement learning and adaptive control used in this study has certain 

advantages and potential in the field of intelligent robot path planning and navigation. However, there 

is still some room for improvement and expansion: 

Improvement of the reinforcement learning algorithm: further improve the reinforcement learning 

algorithm to increase the learning efficiency and stability of the algorithm to adapt to more complex 

environments and tasks. 

Optimisation of adaptive control methods: explore more effective adaptive control methods to 

enable the robot to adjust its path planning and navigation strategies in real time to cope with different 

environmental changes. 

Research on multi-intelligent body systems: consider the collaboration and cooperation between 

multiple intelligent robots to achieve more complex path planning and navigation tasks. 

Validation of real environment applications: the proposed method is applied to real scenarios to verify 



Zhu, Journal of Logistics, Informatics and Service Science, Vol. 10 (2023) No. 3, pp. 235-248 

247 

 

its feasibility and practicality in real environments. 

Despite the results achieved in this study, there are still some limitations and issues to be addressed: 

Limitations of the experimental environment: The experiments in this study were conducted in a 

virtual environment with some variability and limitations. Future research could apply the method to a 

real environment to better evaluate its performance. 

Details of data collection and analysis: The description of data collection and analysis in this study 

is rather general and fails to provide detailed experimental data and analysis processes. Further research 

could provide insights and improvements to the data collection and analysis methods. 

Refinement of the theoretical framework: Although this study proposes a theoretical framework based 

on reinforcement learning and adaptive control, it still needs further refinement and expansion. Future 

research can explore more theoretical models and methods to improve the performance of path planning 

and navigation. 

In summary, this study has achieved certain results for intelligent robot path planning and 

navigation based on reinforcement learning and adaptive control, but there are still many problems to 

be solved and room for improvement. Future research can further explore and optimise the proposed 

methods and apply them to real environments to achieve more accurate and efficient path planning and 

navigation systems. 

5. Conclusion 

Through this study, this article has successfully implemented path planning and navigation for an 

intelligent robot based on reinforcement learning and adaptive control. Experimental results show that 

reinforcement learning algorithms and adaptive control methods can effectively help robots achieve 

accurate path planning and navigation in complex environments. Compared with traditional methods, 

the reinforcement learning and adaptive control-based approach achieves significant improvements in 

path planning and navigation performance. In addition, the experimental results validate the validity 

and feasibility of our proposed theoretical framework. The results of this study have important 

theoretical and practical implications. Firstly, reinforcement learning and adaptive control methods 

provide a new solution for path planning and navigation of intelligent robots, expanding the research 

methods and ideas in the field of intelligent robotics. Secondly, through the analysis and comparison of 

experimental results, this article gains an in-depth understanding of the advantages and applicability of 

reinforcement learning and adaptive control methods in intelligent robot path planning and navigation. 

Finally, this study is of guiding significance for the development and application of intelligent robotics, 

and provides important technical support for the realisation of intelligent robotic systems. However, 

there are some limitations in this study. Firstly, the limitations of the experimental environment and 

data collection methods may have affected the accuracy and reliability of the experimental results. 

Secondly, the selection and size of the study sample may also have some influence on the results. Future 

research can further improve the experimental design and data collection methods and expand the 

sample size to validate and further refine the results of this study. Future research can be conducted in 

the following areas. Firstly, reinforcement learning algorithms and adaptive control methods can be 

further optimised to improve the performance and effectiveness of intelligent robot path planning and 

navigation. Secondly, research on multi-robot collaborative path planning and navigation can be 

explored to cope with complex and changing environments. In addition, other technologies such as 

computer vision and sensor fusion can be combined to further enhance the perception capability and 

autonomous navigation of intelligent robots. In conclusion, path planning and navigation for intelligent 

robots based on reinforcement learning and adaptive control is a promising research area with 

significant application value. The results of this study provide important technical support and 

theoretical guidance for the practical application and development of intelligent robots. As technology 

continues to advance and research progresses, this article believe that intelligent robots will play an 

increasingly important role in various fields. 
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